Raman investigation of mineral fibres and iron compounds in asbestos materials

PRIN 2017 3X8WA4

Laura Fornasini

laura.fornasini@pi.iccom.cnr.it

Simona Raneri CNR-ICCOM Pisa

Danilo Bersani University of Parma

October 2020 – June 2021

29/06/2021

Outline

- Fibres-cells systems investigation with μ -Raman spectroscopy
 - Chrysotile (Balangero, Italy), Erionite (New Jersey, USA) and Crocidolite UICC (South Africa, Africa)
 - ➤ THP1 and A-549 cells
- μ-Raman identification of iron compounds in Chrysotile from Balangero: presence of both Fe(II) and Fe(III) species in micrometric-crystals to be considered in metal release and fibres toxicity

µ-Raman spectroscopy on fibres-cells systems

- Identification of fibres which undergo **phagocytosis**
- Identification of accessory minerals and iron compounds

Fibres:

- Chrysotile, Balangero (Italy)
- Erionite, New Jersey (USA)
- Crocidolite, UICC South Africa (Africa)

Cells:

- A549

Outline

- THP1 no differentiation
- THP1 M0, M1, M2
- THP1 24h, 48h (M0), 72h (M0), 96h (M0)

Fibres-cells

<u>systems</u>

Iron in

Chrysotile

UNIVERSITÀ DEGLI STUDI DI GENOVA

Conclusion

and Future

Experimental Setup

Sample preparation University of Genova

- Fibres concentration: $50 \ \mu g/ml$
- Different treatment time: 24, 48, 72, 96h
- Centrifugation and washing with distilled water
- Deposition on a coverslip glass substrate
- Air-drying and RT conservation

<u>µ-Raman analysis</u>

Outline

Physics and Chemistry Departments, University of Parma

- LabRam and LabRam HR Horiba spectrometers
- Confocal microscope with objective 100x: few microns spot size
- Laser excitations: He-Ne 632.8 nm, diode 785 nm, Nd:YAG 532 nm, Nd:YAG 473.1 nm
- Density filters to reduce laser power and avoid heating effects

Preliminar results on A549 and THP1

- Raman identification of the three fibres in both A549 and THP1 systems
- Higher concentration of fibres in THP1 systems compared to A549 systems: **phagocytosis**

(Selected areas are about 500 \times 600 μm^2)

THP1-Erionite

THP1-Untreated

THP1-Chrysotile

10x A549-Chrysotile

THP1-Crocidolite

10x

Outline

Fibres-cells systems

Iron in Chrysotile 10x

Conclusion

and Future

Preliminar results

10x

Different morphologies for different fibres

Erionite

Outline

50x

100x

Fibres-cells

Conclusion Iron in Chrysotile and Future

THP1-fibres systems

Even more different morphologies in THP1-chrysotile systems

- Curve, elongated, flexible fibres: Chrysotile
- Squat, less elongated fibres: Antigorite
- Rigid, straight, thin fibres: Balangeroite

[1] Petriglieri J.R., Bersani D. et al. *Appl. Sci.* 11 (2021) 287

THP1-Chrysotile systems 7

Accessory minerals in THP1-chrysotile systems

Iron in

Conclusion

and Future

- Micrometric crystals, sometimes found inside cells
- Not fibrous, rounded or irregular shapes ٠
- Presence of magnetite as the most frequent phase, rare ٠ presence of diospide, not identified carbonate and not identified phyllosilicate

Outline

Fibres-cells Chrysotile

THP1-Chrysotile systems

Clusters of agglomerated materials: organic and inorganic signals

THP1-Ctl

- Not found in erionite neither crocidolite systems
- Found in all differentiation (M0, M1, M2)
- Found also in not differentiated THP1
- Increasing size and concentrarion of the clusters with increasing treatment time

- Fibres and (probable) fibres fragments: Ctl, Atg, Blg
- **Cellular** signals
- Several dark coloured micrometric crystals: magnetite and sulphides mainly
- Reddish micrometric crystals: not complete identification
- Iron compounds: iron dissolution in the clusters?
- Formation of new compounds after THP1 interactions?

Fibres-cells systems Iron in

Chrysotile

Conclusion and Future

THP1-Chrysotile clusters

Chrysotile, Antigorite, Balangeroite fibres found in the clusters

THP1-Ctl

10 µm

Iron compounds in the clusters: oxides

- Iron oxides: magnetite mainly, rare ilmenite and hematite.
- Similar compounds found also in Ctl from Balangero without cells

Outline

Fibres-cells

Iron in Conclusion Chrysotile and Future

11

Iron compounds in the clusters: sulphides

296

Wavenumber / cm⁻¹

4500-

4000

Units

[1,2]

Iron sulphides in THP1-Chrysotile clusters

Larger clusters as treatment time increases

Clusters size and concentration increase as treatment time increases
Iron compounds in clusters at different treatment time
Treatment time

Presence of clusters in not differentiated THP1

Treatment time

10x

24h

As observed in THP1 systems:

- Clusters not observed in untreated cells
- Clusters size and concentration increase as treatment time increases
- Iron compounds found in clusters at different treatment times

Iron compoundsOutlineFibres-cells
systemsIron in
ChrysotileConclusion
and Futurein Chrysotile from Balangero: a micro-Raman identification

Abstract submitted to $EMC2020 - 3^{rd}$ European Mineralogical Conference (29/08 - 02/09/2021)

T5. Environmental mineralogy and low T geochemistry > T5-S2. Iron oxides and oxyhydroxides: petrology, environmental relevance and industrial applications

L. Fornasini, S. Raneri, D. Bersani, L. Mantovani, A. F. Gualtieri, *Manuscript to be submitted*

Chrysotile from Balangero: fibres and Cr³⁺ luminescence

- Cr³⁺ luminescence between 680-710 nm (632.8 nm excitation)
- Low-wavenumber range signals in absence of luminescence contribution (785 nm excitation)
- Univocal OH stretching vibration modes of Ctl fibres (473.1 nm excitation)

Outline

Fibrous phases: chrysotile, antigorite and balangeroite

Iron compounds in Chrysotile from Balangero: oxides and oxyhydroxides

- Micrometric crystals (usually $< 10 \ \mu$ m) with reddish and blackish colours
- Identification of iron oxides as magnetite, ilmenite and hematite (rare) and iron oxyhydroxides as lepidocrocite (rare)
- Fe(II) and Fe(III) presence in iron oxides and oxyhydroxides

Outline

Iron compounds in Chrysotile from Balangero: sulphides

- Micrometric crystals (usually $<10 \ \mu$ m) with blackish colour
- Identification of iron sulphides as mackinawite ^[1,2] and Fe-Ni sulphides (rare): S, Fe and Ni detected by SEM-EDS
- Mackinawite in different forms as nanocrystalline mackinawite and partially oxidized mackinawite [1,2]

Conclusion

and Future

• Fe(II) and Fe(III) presence in iron sulphides

Outline

Iron compounds: sulphides mixed with fibres

• Identification of iron compounds also mixed with fibres, as shown for balangeroite and partially oxidized mackinawite

- Micrometric yellow crystals
- Probable carbonates containing Fe and Mg detected by SEM-EDS

As of today conclusions

Fibres-cell systems

- Fibres **phagocytosis** in THP1, not in A549
- Different **morphologies** among the 3 investigated fibres
- Presence of 3 fibrous phases in chrysotile systems: chrysotile, antigorite and balangeroite
- Accessory minerals in chrysotile systems in coloured micro-crystals: iron oxides and sulphides
- Clusters of agglomerated materials containing both fibres and cellular material, including dark coloured crystals
- Larger and denser clusters as treatment time increases
- Presence of clusters in not differentiated THP1: materials is incorporated before the differentiation

Iron compounds in Balangero chrysotile

- Fibres identification in chrysotile from Balangero: chrysotile, antigorite and balangeroite
- **Cr³⁺ luminescence** detected within the Raman spectra on the fibres
- Micrometric crystals of iron compounds: iron oxides and oxyhydroxides as magnetite, ilmenite, hematite and lepidocrocite; iron sulphides as mackinawite and (Fe, Ni) sulphide; iron carbonates containing Fe and Mg
- Fe(II) and Fe(III) presence in iron compounds: metals release to be considered in the reactivity and dissolution of asbestos fibres in the lungs.

Work-in-progress and future analyses

- Iron compounds in chrysotile from Balangero: paper submission
- Investigation of changes in fibres at different treatment time of fibres-cells systems: analyses supporting the unit form University of Genova
- Iron distribution in clusters of fibres-cells systems through synchrotron analyses: next proposal for TwinMic beamline at Elettra Trieste

Conferences partecipation

<u>L. Fornasini</u>, D. Bersani, S. Raneri, A. F. Gualtieri, *Iron compounds identification by micro-Raman spectroscopy in chrysotile asbestos from Balangero*, abstract submitted to EMC2020 - 3rd European Mineralogical Conference (29/08 - 02/09/2021) - Online - T5. Environmental mineralogy and low T geochemistry > T5-S2. Iron oxides and oxyhydroxides: petrology, environmental relevance and industrial applications

Outline

Iron in Chrysotile Conclusion

and Future

Acknowledgements

Simona Raneri, Istituto di Chimica dei Composti OrganoMetallici, CNR-ICCOM Pisa Danilo Bersani, Dipartimento di Scienze Matematiche, Fisiche e Informatiche - UNIPR Anna Maria Bassi, Dipartimento di Medicina Sperimentale - UNIGE Sonia Scarfi, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita - UNIGE Vanessa Almonti, Dipartimento di Medicina Sperimentale - UNIGE Serena Mirata, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita – UNIGE Barbara Marengo, Dipartimento di Medicina Sperimentale – UNIGE Alessandro Francesco Gualtieri, Dipartimento di Scienze Chimiche e Geologiche - UNIMORE Dario Di Giuseppe, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale – UNIPR Matteo Masino, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale – UNIPR

Thank you for the attention